Abstract

Nickel-based superalloys are being increasingly used in aerospace, automotive industries due to their excellent thermo-mechanical properties. These applications require complex shapes and profiles which may not be obtained by conventional machining processes. These materials are also known as difficult-to-machine due to their excellent thermo-mechanical properties. The electrical discharge drilling proves its suitability in the precision drilling of superalloys. During, the electrical discharge drilling of these materials, hole taper, hole circularity and hole dilation are key attributes which influence the drilled hole quality. In this research paper, the experiments have been conducted by L27 orthogonal array and this experimental data have been utilized for developing the models of different geometrical quality characteristics such as hole circularity, hole taper and hole dilation. Further, a new hybrid approach grey relational analysis-based genetic algorithm has been proposed and implemented for the multi-objective optimization of different quality characteristics. The effects of different process parameters on various geometrical quality characteristics have also been discussed. Finally, the confirmation tests have been performed to validate the predicted results obtained by the proposed hybrid methodology to the experimental results. It has been observed by the comparison results that the machining performance in the electrical discharge drilling process has been remarkably improved through proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.