Abstract

For maneuvering target tracking, we propose a novel grey prediction based particle fllter (GP-PF), which incorporates the grey prediction algorithm into the standard particle fllter (SPF). The basic idea of the GP-PF is that new particles are sampled by both the state transition prior and the grey prediction algorithm. Since the grey prediction algorithm is a kind of model-free method and is able to predict the system state based on historical measurements other than establishing a priori dynamic model, the GP-PF can signiflcantly alleviate the sample degeneracy problem which is common in SPF, especially when it is used for maneuvering target tracking. Simulations are conducted in the context of two typical maneuvering motion scenarios and the results indicate that the overall performance of the proposed GP-PF is better than the SPF and the multiple model particle fllter (MMPF) when the tracking accuracy, computational complexity and tracking lost probability are considered. The performance improvements can be attributed to that the GP-PF has both model-based and model-free features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.