Abstract

Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process (NHPP) is the most used one. However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software Reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call