Abstract

In this paper, we present a new MapReduce framework, called Grex, designed to leverage general purpose graphics processing units (GPUs) for parallel data processing. Grex provides several new features. First, it supports a parallel split method to tokenize input data of variable sizes, such as words in e-books or URLs in web documents, in parallel using GPU threads. Second, Grex evenly distributes data to map/reduce tasks to avoid data partitioning skews. In addition, Grex provides a new memory management scheme to enhance the performance by exploiting the GPU memory hierarchy. Notably, all these capabilities are supported via careful system design without requiring any locks or atomic operations for thread synchronization. The experimental results show that our system is up to 12.4× and 4.1× faster than two state-of-the-art GPU-based MapReduce frameworks for the tested applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.