Abstract

A decision maker doubts the stationarity of his environment. In response, he uses two models, one with time-varying parameters, and another with constant parameters. Forecasts are then based on a Bayesian model averaging strategy, which mixes forecasts from the two models. In reality, structural parameters are constant, but the (unknown) true model features expectational feedback, which the reduced-form models neglect. This feedback permits fears of parameter instability to become self-confirming. Within the context of a standard asset-pricing model, we use the tools of large deviations theory to show that even though the constant parameter model would converge to the rational expectations equilibrium if considered in isolation, the mere presence of an unstable alternative drives it out of consideration. (JEL C63, D83, D84)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.