Abstract

Fragment-based drug discovery (FBDD) is widely used in drug design. One useful strategy in FBDD is designing linkers for linking fragments to optimize their molecular properties. In the current study, we present a novel generative fragment linking model, GRELinker, which utilizes a gated-graph neural network combined with reinforcement and curriculum learning to generate molecules with desirable attributes. The model has been shown to be efficient in multiple tasks, including controlling log P, optimizing synthesizability or predicted bioactivity of compounds, and generating molecules with high 3D similarity but low 2D similarity to the lead compound. Specifically, our model outperforms the previously reported reinforcement learning (RL) built-in method DRlinker on these benchmark tasks. Moreover, GRELinker has been successfully used in an actual FBDD case to generate optimized molecules with enhanced affinities by employing the docking score as the scoring function in RL. Besides, the implementation of curriculum learning in our framework enables the generation of structurally complex linkers more efficiently. These results demonstrate the benefits and feasibility of GRELinker in linker design for molecular optimization and drug discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.