Abstract

Unmanned Aerial Vehicles (UAVs) offer a strategic solution to address the increasing demand for cellular connectivity in rural, remote, and disaster-hit regions lacking traditional infrastructure. However, UAVs’ limited onboard energy storage necessitates optimized, energy-efficient communication strategies and intelligent energy expenditure to maximize productivity. This work proposes a novel joint optimization model to coordinate charging operations across multiple UAVs functioning as aerial base stations. The model optimizes charging station assignments and trajectories to maximize UAV flight time and minimize overall energy expenditure. By leveraging both static ground base stations and mobile supercharging stations for opportunistic charging while considering battery chemistry constraints, the mixed integer linear programming approach reduces energy usage by 9.1 ​% versus conventional greedy heuristics. The key results provide insights into separating charging strategies based on UAV mobility patterns, fully utilizing all available infrastructure through balanced distribution, and strategically leveraging existing base stations before deploying dedicated charging assets. Compared to myopic localized decisions, the globally optimized solution extends battery life and enhances productivity. Overall, this work marks a significant advance in UAV energy management by consolidating multiple improvements within a unified coordination framework focused on joint charging optimization across UAV fleets. The model lays a critical foundation for energy-efficient aerial network deployments to serve the connectivity needs of the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.