Abstract
The method of the two-time temperature-dependent Green's function has been used to analyze the Ising model of a ferromagnet in an external magnetic field. The selection of a particular Green's function enables us to write an exact expression for the equation of motion. We are then led to a differential difference equation for the correlation function corresponding to the Green's function. No decoupling assumptions have been made, so the equation is exact for both arbitrary spin and range of interaction. It is shown how various approximate theories may be extracted from our formalism. The exact differential difference equation may be reduced to a partial differential equation. The latter form allows us to generate relations among the magnetization and spin-spin correlation functions. These relations are given in detail for the case of spin \textonehalf{} and $z$ nearest neighbors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.