Abstract

Problems of obtaining Green's function and using it for studying the structure of scalar electromagnetic fields in a sinusoidal superlattice are considered. An analytical solution of equation in the k-space for Green's function is found. Green's function in the r-space is obtained by both the numerical and the approximate analytical Fourier transformation of that solution. It is shown, that from the experimental study of Green's function in the k-space the position of the plane radiation source relative to the extremes of the dielectric permittivity ε(z) can be determined. The relief map of Green's function in the r-space shows that the structure of the field takes the form of chains of islets in the plane ωz, the number of which increases with increasing the distance from a radiation source. This effect leads to different frequency dependences of Green's function at different distances from the radiation source and can be used to measure the distance to the internal source. The real component of Green's function and its spatial decay in the forbidden zones in the near field is investigated. The local density of states, depending on the position of the source in the superlattice, is calculated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call