Abstract

Recently, Schelkunoff integrals have been used to formulate a Green’s function for analysis of radiation from a vertical electric dipole over an imperfect ground plane. Schelkunoff integrals were proved to be more suitable for numerical computation for large radial distances than the Sommerfeld integrals which are used conventionally to deal with antennas over an imperfect ground. This is because Schelkunoff integrals have no convergence problem on the tail of the contour of integration, especially when the fields are calculated near the boundary separating the media and for large source–receiver separations. In this paper, the Schelkunoff integrals are utilized to derive a Green’s function for the case of a horizontal electric dipole radiating over an imperfect ground plane (a two-media problem where the lower medium is lossy). A detailed comparison between the presented expressions and the conventional ones based on Sommerfeld integrals is illustrated both numerically and analytically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.