Abstract

A Green's function theory for the excitation of, and scattering from, particle chains is developed. A $Z$ transform is applied to the discrete dipole approximation of the chain, and the chain's spectral properties are explored in the complex $Z$ plane. It is shown that a continuous spectrum may be excited, and the roles of the discrete and continuous spectra in the chain response are studied. The latter may dominate the chain response under lossy conditions. Using the Wiener-Hopf technique, the theory is extended to semi-infinite chains and the chain edge effects are studied. It is shown that edge effects can significantly enhance chain excitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.