Abstract

Recently, the heat transfer in porous passages has received attention from many investigators. The Green's function solution method can serve as a powerful tool to accomplish this task of providing solutions to this type of problems with or without the effect of axial conduction. The study of heat transfer with emphasis on frictional heating, in the absence of axial conduction, is the subject of this presentation. As a simple example, consideration is given to the numerical study of the heat transfer in flow between two impermeable parallel plates. The individual effects of temperature change at the walls, frictional heating, and the combined effects are examined. The data shows that the combined effects can produce removable singularities under certain boundary conditions. To avoid the occurrence of singularities in these types of applications, certain heat transfer parameters are presented in different but basic forms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.