Abstract

A one-dimensional unsteady state mathematical model of coupled heat and mass transfer equations is accomplished to simulate the convective drying of cylindrical quince slices with axis parallel to the hot air flow. The semi-analytical proposed solution method considers fundamentals of the convective drying process and takes internal resistances to temperature and moisture content into account. Green's function method (GFM) is used due to existence of time dependent boundary conditions. In the present study, unlike classic problems, evaporation term initiate a strong coupling between heat and mass transfer equations and therefore in the present study the basic idea of numerical solutions which is repetition and correction, is used to present a novel analytical solution and correct it. In addition the effects of Biot number and relative humidity on drying kinetics are investigated. The agreement between published experimental results and model predictions is remarkable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.