Abstract
We have studied the effect of both axial and transverse anisotropy on the critical field and thermodynamic properties of the field induced three dimensional antiferromagnetic Heisenberg model on the frustrated hexagonal lattice for Cs2CuCl4 compound. The spin model is mapped to a bosonic one with the hard core repulsion constraint and the Green’s function approach has been implemented to get the low energy spectrum and the corresponding thermodynamic properties. To find the critical field (B c ) we have looked for the Bose-Einstein condensation of quasi-particles (magnons) which takes place when the magnon spectrum vanishes at the ordering spiral wave vector. We have also obtained the dispersion of magnon spectrum in the critical magnetic field for each anisotropy parameter to find the spiral wave vector where the spectrum gets its minimum. The magnon energies show a linear dispersion relation close to the quantum critical point. The effect of hard core boson interaction on the single particle excitation energies leads to a temperature dependence of the magnon spectrum versus magnetic field. We have also studied the behavior of specific heat and static structure factor versus temperature and magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.