Abstract

During recent years unmanned aerial vehicles (UAVs) have been increasingly used for research and application in both agriculture and forestry. Nevertheless, most of this work has been devoted to improving accuracy and explanatory power, often at the cost of usability and affordability. We tested a low-cost UAV and a simple workflow to apply four different greenness indices to the monitoring of pine (Pinus sylvestris and P. nigra) post-fire regeneration in a Mediterranean forest. We selected two sites and measured all pines within a pre-selected plot. Winter flights were carried out at each of the sites, at two flight heights (50 and 120 m). Automatically normalized images entered an structure from motion (SfM) based photogrammetric software for restitution, and the obtained point cloud and orthomosaic processed to get a canopy height model and four different greenness indices. The sum of pine diameter at breast height (DBH) was regressed on summary statistics of greenness indices and the canopy height model. Excess green index (ExGI) and green chromatic coordinate (GCC) index outperformed the visible atmospherically resistant index (VARI) and green red vegetation index (GRVI) in estimating pine DBH, while canopy height slightly improved the models. Flight height did not severely affect model performance. Our results show that low cost UAVs may improve forest monitoring after disturbance, even in those habitats and situations where resource limitation is an issue.

Highlights

  • During recent years, unmanned aerial vehicles (UAVs) have grown increasingly popular for the study of land and its cover [1,2]

  • In this work we explore the use of a low-cost UAV platform as a tool for monitoring recovery of a Mediterranean forest after a strong disturbance

  • We aimed to develop a tool to monitor the emergence of pines that grow among the oaks and test the suitability of low-cost UAVs as a cost effective monitoring tool

Read more

Summary

Introduction

UAVs (unmanned aerial vehicles) have grown increasingly popular for the study of land and its cover [1,2]. This trend is the consequence of a recent exponential development of both the UAV industry and the do-it-yourself community, fostered by the technological advances in robotics and the miniaturization of electronics. UAVs allow the reduction of costs of airborne photography and LIDAR, and approach technology to its final user [2,3]. By doing so, it offers great flexibility. A new, tailor-cut telemetry sampling strategy is possible, designed to fit the specific needs of each case study [3]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call