Abstract

ABSTRACTThe new mineral greenlizardite (IMA2017-001), (NH4)Na(UO2)2(SO4)2(OH)2·4H2O, was found in the Green Lizard mine, Red Canyon, San Juan County, Utah, USA, where it occurs as a secondary alteration phase. It is associated with ammoniozippeite, boussingaultite and dickite. It forms as light green-yellow blades up to ~0.3 mm long. The mineral is vitreous and transparent with a white streak. It fluoresces greenish blue in 405 nm light. Mohs hardness is ~2. Crystals are brittle with irregular fracture and two cleavages: perfect {001} and good {2$\bar 1$0}. Greenlizardite is easily soluble in room-temperature H2O. The calculated density is 3.469 g cm–3. Optically, it is biaxial (+) with α = 1.559(1), β = 1.582(1) and γ = 1.608(1) (measured in white light). The measured 2V is 88(1)°; the calculated 2V is 87.8°. Dispersion is moderate, r < v. Pleochroism is X = very pale yellow green, Y = pale yellow green and Z = light yellow green; X < Y < Z. The optical orientation is X ≈ c, Y ≈ a and Z ≈ b*. The Raman spectrum exhibits bands attributable to both sulfate and uranyl groups. Electron probe microanalyses (with H2O based on the crystal structure) yielded (NH4)0.98Na1.00U1.96S2.04O18.00H10.02. Greenlizardite is triclinic, P$\bar 1$, a = 6.83617(17), b = 9.5127(3), c = 13.8979(10) Å, α = 98.636(7), β = 93.713(7), γ = 110.102(8)°, V = 832.49(8) Å3 and Z = 2. The crystal structure (R1 = 2.39% for 2542 I > 2σI) contains edge-sharing dimers of UO7 pentagonal bipyramids. The dimers link by sharing corners with SO4 groups to form a [(UO2)2(SO4)2(OH)2]2– sheet based on the phosphuranylite anion topology. Zig-zag edge-sharing chains of NaO6 octahedra link adjacent [(UO2)2(SO4)2(OH)2]2– sheets, forming thick slabs. NH4 bonds to O atoms in adjacent slabs linking them together. H2O groups occupy channels in the slabs and space between the slabs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call