Abstract
AbstractThe Polar MM5 mesoscale atmospheric model was run for 13 years (1991–2003) over Greenland at 24 km horizontal resolution (Box and others, 2004). The model physics were driven by satellite, station and weather-balloon observational data assimilation, i.e. European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. The analysis in this study focuses on the response of the surface mass balance to its primary controls: temperature and precipitation. The results indicate coherent spatial patterns of variability and statistically significant links with temperature and precipitation and the North Atlantic Oscillation. Precipitation trends have the same spatial pattern and sign as temperature, suggesting an association of precipitation and temperature variability. Increasing temperatures contribute to an increasing ablation trend and expansion of the ablation zone despite increasing accumulation trends. The Pinatubo (Philippines) volcanic cooling in the early 1990s enhances this apparent warming trend. Only in the northeast does precipitation appear to dominate the surface mass balance, where both temperature and precipitation have decreased. There is little evidence for a total ice-sheet surface mass-balance trend, although the meltwater runoff has a positive trend and, combined with iceberg discharge and basal melting estimates, suggests the ice sheet as a whole is in a state of net mass loss over this period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.