Abstract

AbstractIn times of warming in polar regions, the prediction of ice sheet discharge is of utmost importance to society, because of its impact on sea level rise. In simulations the flow rate of ice is usually implemented as proportional to the differential stress to the power of the exponent n = 3. This exponent influences the softness of the modeled ice, as higher values would produce faster flow under equal stress. We show that the stress exponent, which best fits the observed state of the Greenland Ice Sheet, equals n = 4. Our results, which are not dependent on a possible basal sliding component of flow, indicate that most of the interior northern ice sheet is currently frozen to bedrock, except for the large ice streams and marginal ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call