Abstract
AbstractAbundant geomorphological and geochemical evidence of liquid water on the surface of early Mars during the late Noachian and early Hesperian periods needs to be reconciled with a fainter young Sun. While a dense atmosphere and related warming mechanisms are potential solutions to the early Mars climate problem, further investigation is warranted. Here, we complete a comprehensive survey of the warming potential of all known greenhouse gases and perform detailed calculations for 15 different minor gas species under early Martian conditions. We find that of these 15 species, , , , , and cause significant greenhouse warming at concentrations of 0.1 ppmv or greater. However, the most highly effective greenhouse gas species also tend to be more condensable, soluble and vulnerable to photolytic destruction. To provide a reference for future atmospheric evolution and photochemical studies, we have made our warming potential database freely available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.