Abstract

Challenges to sustainable agriculture are increasing with forecasts for greater climate variability, including rising temperatures, extreme precipitation events, and prolonged droughts. One important factor that contributes to the increasing climate variability is greenhouse gas emissions, including from agro-ecosystems. The US Environment Protection Agency indicates soil management and enteric fermentation from livestock contribute ~ 80% of total greenhouse gas from agriculture sector. Management practices conducive to greenhouse gas emissions, and possible mitigation strategies for the agricultural systems of Southern Great Plains, an integral part of the US beef industry, have not been thoroughly defined. The objective of this paper is to review and synthesize the literature regarding management practices conducive to emissions [carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4)] from croplands and grazing lands of Southern Great Plains, and potential strategies that may aid in greenhouse gas mitigation in the region. The results from different published studies evaluating such strategies were analyzed to determine whether these practices have potential in mitigating greenhouse gas emissions from agronomic and grazing lands. Based on the analysis, it can be recommended that increasing the amount of cropland managed by conservation tillage, fertilizer management, crop rotation systems, grazing management, and fertilizer amendments can be potential management strategies for greenhouse gas mitigation. As agro-ecosystems are very complex and reducing emissions using strategies in one sector may stimulate higher emissions in other sectors, these strategies require testing at the systems-level before they can be implemented to advise applied policies for the Southern Great Plains region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.