Abstract
This paper analyses factors affecting the production of greenhouse gases from the treatment of residual municipal waste. The analysis is conducted so that the environmentally-friendly decision-making criteria may be later implemented into an optimisation task, which allocates waste treatment capacities. A simplified method of life cycle assessment is applied to describe environmental impact of the allocation. Global warming potential (GWP) is employed as a unit to quantify greenhouse gases (GHG) emissions. The objective is to identify the environmental burdens and credits measured by GWP for the three fundamental methods for treatment of residual waste unsuitable for material recovery. The three methods are waste-to-energy (WTE), landfilling and mechanicalbiological treatment (MBT) with subsequent utilization of refuse-derived fuel. The composition of the waste itself and content of fossil-derived carbon and biogenic carbon are important parameters to identify amounts of GHG. In case of WTE, subsequent use of the energy, e.g., in district heating systems in case of heat, is another important parameter to be considered. GWP function dependant on WTE capacity is introduced. The conclusion of this paper provides an assessment of the potential benefits of the results in optimisation tasks for the planning of overall strategy in waste management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.