Abstract
Wind farms provide electricity with no direct emissions. However, their output cannot be forecasted perfectly, even a short time ahead. Consequently, power systems with large amounts of wind power may need to keep extra fossil-fired generators turned on and ready to provide power if wind farm output drops unexpectedly. In this work, I introduce a new model for estimating the uncertainty in short-term wind power forecasts, and how this uncertainty varies as wind power is aggregated over larger regions. I then use this model to estimate the reserve requirements in order to compensate for wind forecast errors to a 99.999% level of reliability, and an upper limit on the amount of carbon dioxide that would be emitted if natural gas power plants are used for this purpose. I find that for regions larger than 500 km across, operating reserves will undo 6% or less of the greenhouse gas emission savings that would otherwise be expected from wind power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.