Abstract

Abstract. A laboratory study was conducted to measure the effects of diet, moisture, temperature, and time on greenhouse gas (GHG) emissions from feedlot surface materials (FSM). The FSM were collected from open-lot pens where beef cattle were fed either a dry-rolled corn (DRC) diet containing no wet distillers grains with solubles (WDGS) or a DRC diet containing 35% WDGS. The FSM were collected, air-dried or mixed with 3.0 L of water to represent dry or wet conditions, and then incubated at temperatures of 5°C, 15°C, 25°C, or 35°C. Static flux chambers were used to quantify GHG emissions over a 14-day period. Flux data for each diet × moisture combination were analyzed using repeated measures in time. The largest GHG emissions occurred under wet conditions at temperatures of 25°C and 35°C. Flux values for these conditions typically were significantly greater than measurements obtained on the same day at 5°C and 15°C. Mean emissions under wet conditions for CO2, CH4, and N2O were 35, 121, and 278 times greater, respectively, than emissions from dry FSM. The 0% WDGS diet produced mean CO2 and N2O flux measurements that were 1.8 and 1.5 times greater, respectively, than those obtained for the 35% WDGS diet. The 35% WDGS diet, in contrast, produced a mean CH4 emission rate that was 6 times greater than the 0% WDGS diet. Management for GHG mitigation should include design and/or maintenance of pen drainage to speed drying as well as the use of modified animal diets. Keywords: Air quality, Carbon dioxide, Confined animal feeding operations, Drainage, Emission rates, Feedlot, Greenhouse gas, Methane, Nitrous oxide, Pen design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.