Abstract

Here, a novel nanohybrid material (Ag@CD@ANS) based on oat starch was produced, characterized, and applied to extract persistent organic pollutants in a shrimp sample. By the characterization experiments, Ag@CD@ANS was successfully synthesized. The functionalization of the material by 1,2-naphthoquinone-4-sulphonic acid (ANS) was confirmed using the infrared technique and CHN elemental analysis. The isotherm study showed that the material has a high adsorption capacity for the pesticides of interest (flutriafol, atrazine, heptachlor, DDT and bifenthrin) allowing their extraction from shrimp samples. The optimal condition for extraction was obtained using multivariate analysis. The nature of the elution solvent (hexane, methanol, acetonitrile) and the mass ratio between sample:adsorbent (1:1; 1:5 and 1:10) were the evaluated factors for extraction using Ag@CD@ANS and commercial adsorbents (neutral alumina, octadecyl, silica gel). From the multivariate analysis, it was observed that the optimal condition for pesticide extraction using Ag@CD@ANS was reached, using a 1:5 ratio (sample:adsorbent) and acetonitrile (10 mL) as elution solvent. For the commercial adsorbents, the optimal condition for pesticide extraction was reached, using a 1:3 ratio (sample:adsorbent), acetonitrile (10 mL) and neutral alumina as commercial adsorbent. Ag@CD@ANS efficiency was compared with an optimal commercial adsorbent (neutral alumina). No significant difference (p < 0.05) between neutral alumina and Ag@CD@ANS was observed. Recoveries ranging from 75 to 105 % with coefficients of variation ≤ 15 % (n = 3) were obtained using neutral alumina while using Ag@CD@ANS, recoveries ranging from 73 to 102 %, with coefficient of variation ≤ 13 % (n = 3) were obtained for the target pesticides. Limits of detection ranging from 0.5 to 1.0 µg Kg−1 and limits of quantification ranging from 1.6 to 3.3 µg Kg−1 were reached. The results demonstrated that Ag@CD@ANS can alternatively be used as a support for the extraction of persistent organic pollutants, having the advantage of being reusable for up to three cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.