Abstract
The Lempert function for a set of poles in a domain of Cn at a point z is obtained by taking a certain infimum over all analytic disks going through the poles and the point z, and majorizes the corresponding multi-pole pluricomplex Green function. Coman proved that both coincide in the case of sets of two poles in the unit ball. We give an example of a set of three poles in the unit ball where this equality fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.