Abstract
Gd2Sn2O7:Yb3+/Er3+ (abbreviation for GSO: Yb3+/Er3+) nanophosphors codoped with Er3+ (0.1-2 at%) and Yb3+ (0.5-5 at%) were synthesized by a microwave hydrothermal process and annealed at 800 ℃ for 5 h. Powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and upconversion emission spectra were used to characterize the as-synthesized sample. Under the irradiation of 980 nm laser diode, the GSO: Yb3+/Er3+ nanophosphors emitted green emissions centered at 525 and 546 nm (Er3+ :2H11/2→4I15/2 and 4S3/2→4I15/2 transition), red emissions centered at 659 and 677 nm (Er3+:4F9/2→4I15/2 transition). The temperature dependent emission intensity ratio of the thermally coupled levels (2H11/2/4S3/2) of Er3+ in the wide-range of 110-573 K was recorded to study the optical thermometric properties of GSO: Yb3+/Er3+ nanophosphors. The maximum sensitivity of GSO: Yb3+/Er3+ nanophosphors was approximately 36.34x10-4 K-1 at 466 K. This result indicates that GSO: Yb3+/Er3+ nanophosphors are potential candidates for wide-range optical temperature sensors with high sensitivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.