Abstract
The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25–50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60–70 cm curved carapace length, (CCL) or 15–20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.