Abstract

In nature, chitin is organized in hierarchical structures composed of nanoscale building blocks that show outstanding mechanical and optical properties attractive for nanomaterial design. For applications that benefit from a maximized interface such as nanocomposites and Pickering emulsions, individualized chitin nanocrystals (ChNCs) are of interest. However, when extracted in water suspension, their individualization is affected by ChNC self-assembly, requiring a large amount of water (above 90%) for ChNC transport and stock, which limits their widespread use. To master their individualization upon drying and after regeneration, we herein report a waterborne topochemical one-pot acid hydrolysis/Fischer esterification to extract ChNCs from chitin and simultaneously decorate their surface with lactate or butyrate moieties. Controlled reaction conditions were designed to obtain nanocrystals of a comparable aspect ratio of about 30 and a degree of modification of about 30% of the ChNC surface, under the rationale to assess the only effect of the topochemistry on ChNC supramolecular organization. The rheological analysis coupled with polarized light imaging shows how the nematic structuring is hindered by both surface ester moieties. The increased viscosity and elasticity of the modified ChNC colloids indicate a gel-like phase, where typical ChNC clusters of liquid crystalline phases are disrupted. Pickering emulsions have been prepared from lyophilized nanocrystals as a proof of concept. Our results demonstrate that only the emulsions stabilized by the modified ChNCs have excellent stability over time, highlighting that their individualization can be regenerated from the dry state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.