Abstract

Liquid organic peroxides, such as tert-butyl peroxybenzoate (TBPB), have been widely employed in the petrifaction industry as a polymerization formation agent. This study investigated the thermokinetic parameters of TBPB by isothermal kinetic algorithms and non-isothermal kinetic equations, using thermal activity monitor III (TAM III) and differential scanning calorimetry (DSC), respectively. Simulations of 0.5 L, 25 kg, 55 gallon, and 400 kg reactors in liquid thermal explosion models were performed and compared to the results in the literature. A green thermal analysis was developed for a reactor containing TBPB to prevent pollution and reduce the energy consumption by thermal decomposition. It is based on the thermal hazard properties, such as the heat of decomposition (Δ H d), activation energy ( E a), self-accelerating decomposition temperature (SADT), control temperature (CT), emergency temperature (ET), and critical temperature (TCR). From the experimental results, the optimal conditions to avoid violent runaway reactions during the storage and transportation of TBPB were determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call