Abstract

Activated pancreatic stellate cells (PSCs) play a central role in the pathogenesis of pancreatic fibrogenesis and inflammation. Ethanol, a major cause of chronic pancreatitis, directly induces PSC activation and oxidative stress. Inhibition of PSC activation or stimulation to PSC might be an effective therapeutic strategy for the prevention of pancreatic fibrosis, and (-)-epigallocatechin-3-gallate (EGCG), a major component of green tea extracts, is a potent antioxidant of polyphenols. Therefore, we examined the mechanisms through which ethanol induces oxidative stress on PSCs and evaluated the effect of EGCG on activation and cell functions of ethanol-stimulated PSCs. The PSCs were isolated from the pancreas of male Wister rats with Nycodenz gradient methods and cells between passages one and four were used. Isolated PSCs were cultured with ethanol (50 mM) in the absence or presence of EGCG (5 microM or 25 microM). The EGCG pre-treatment abolished ethanol-induced lipid peroxidation of the cell membrane, loss of total superoxide dismutase (SOD) activity and suppressed ethanol-induced gene expressions of Mn- and Cu/Zn-SOD. EGCG also suppressed ethanol-induced p38 mitogen-activated protein (MAP) kinase phosphorylation, alpha-smooth muscle actin production in PSCs and activated transforming growth factor-beta1 secretion into the medium. Furthermore, EGCG inhibited ethanol-induced type-I procollagen production and collagen secretion. In addition, EGCG inhibited transformation of freshly isolated cells to activated myofibroblast-like phenotype. Our results suggest that green tea and polyphenols could prevent pancreatic fibrosis by inhibiting PSC activation through the antioxidative effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.