Abstract
Epigallocatechin-3-gallate (EGCG) is the major component of green tea polyphenols, whose wide range of biological properties includes anti-fibrogenic activity. Matrix metalloproteinases (MMP) that participate in extracellular matrix degradation are involved in the development of hepatic fibrosis. The present study investigates whether EGCG inhibits activation of the major gelatinase matrix metalloproteinase-2 (MMP-2) in rat hepatic stellate cells (HSC). The expression of MMP-2, tissue inhibitors of metalloproteinases-2 (TIMP-2), and membrane-type 1-MMP (MT1-MMP) was assessed by RT-PCR and Western blot analyses. MMP-2 activity was evaluated by zymography and MT1-MMP activity was assessed by an enzymatic assay. HSC migration was measured by a wound healing assay and cell invasion was performed using Transwell cell culture chambers. The expression of MMP-2 mRNA and protein in HSC was substantially reduced by EGCG treatment. EGCG treatment also reduced concanavalin A (ConA)-induced activation of secreted MMP-2 and reduced MT1-MMP activity in a dose-dependent manner. In addition, EGCG inhibited either HSC migration or invasion. The abilities of EGCG to suppress MMP-2 activation and HSC invasiveness suggest that EGCG may be useful in the treatment and prevention of hepatic fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.