Abstract

The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.