Abstract

This study investigates the effect of epigallocatechin gallate (EGCG) on white and beige preadipocyte growth and explores the involvement of the miR-let-7a/HMGA2 pathway. 3T3-L1 and D12 cells are treated with EGCG. The effect of EGCG on cell proliferation and viability is evaluated, as well as microRNA (miRNA)-related signaling pathways. EGCG inhibits 3T3-L1 and D12 preadipocyte growth, upregulates miR-let-7a expression, and downregulates high-mobility group AT-hook 2 (HMGA2) mRNA and protein levels in a time- and dose-dependent manner. In addition, overexpression of miR-let-7a significantly inhibits the growth of 3T3-L1 and D12 cells and decreases HMGA2 mRNA and protein levels. MiR-let-7a inhibitor antagonizes the inhibitory effects of EGCG on the number and viability of 3T3-L1 and D12 cells. Furthermore, miR-let-7a inhibitor reverses the EGCG-induced increase in miR-let-7a expression levels and decrease in HMGA2 mRNA and protein levels. HMGA2 overexpression induces an increase in cell number and viability and antagonizes EGCG-suppressed cell growth and HMGA2 expression in 3T3-L1 and D12 preadipocytes. EGCG inhibits the growth of 3T3-L1 and D12 preadipocytes by modulating the miR-let-7a and HMGA2 pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call