Abstract

BackgroundThe activity of one of the major catechins in Green Tea, the polyphenol (−)-epigallocatechin-3-gallate (EGCG), has been shown to have a variety of health benefits. Recent studies suggest that EGCG can modulate both the innate and adaptive arms of the immune system. The goal of the current studies was to examine the immunomodulatory effects and mechanisms of action of EGCG on experimental arthritis in mice.MethodsEGCG (10 mg/kg) was administered by oral gavage after CIA induction, while control mice were administered phosphate buffered saline (PBS). Disease mechanisms were studied in both groups of mice. Phenotypes were examined using repeated measure analysis of variance (ANOVA) and data from in vitro and ex vivo experiments were analyzed for significance using the Mann-Whitney U test.ResultsEGCG treatment ameliorated clinical symptoms and reduced histological scores in arthritic mice. Serum type-II collagen-specific immunoglobulin (Ig) IgG2a antibodies were significantly lower in EGCG-fed mice compared to PBS-treated mice. EGCG significantly suppressed T cell proliferation and relative frequencies of CD4 T cells, CD8 T cells and B cell subsets including marginal zone B cells, T1 and T2 transitional B cells, while increasing the frequency of CD4+ Foxp3+ regulatory T cells (Tregs) and indoleamine‐2,3‐dioxygenase (IDO) expression by CD11b+ dendritic cells (DC). Splenic CD11b+ DC from EGCG fed mice induced an increased frequency of Tregs via an IDO-dependent mechanism in in vitro cultures. Importantly, joint homogenates from EGCG-fed mice exhibited significantly increased levels of Nuclear Factor, Erythroid 2-Like 2 (Nrf-2) and Heme oxygenase-1 (HO-1) compared with PBS-fed mice.ConclusionsThis is the first report of upregulation of the Nrf-2 antioxidant pathway in EGCG-mediated immunoregulation. EGCG ameliorated experimental arthritis in mice by eliciting IDO-producing DCs, increasing frequencies of T regs and inducing the activation of the Nrf-2 antioxidant pathway. It remains to be established whether EGCG is useful for the prevention and treatment of rheumatoid arthritis and other inflammatory disorders.

Highlights

  • Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by leukocyte infiltration and inflammation in the synovial membranes of joints

  • EGCG treatment reduces disease activity in collageninduced arthritis We determined whether EGCG modulated disease activity in a murine collagen-induced arthritis (CIA) model

  • Mice were fed with EGCG nine times over three weeks with 10 mg/kg, starting on day 21 after induction of arthritis throughout the disease course and vehicle-fed or EGCG-fed mice were observed for 49 days for the development of clinical arthritis (Fig. 1)

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by leukocyte infiltration and inflammation in the synovial membranes of joints. The features of disease can be severely debilitating with pulmonary, renal and cardiovascular involvement in addition to joint destruction leading to significant functional disability and increased morbidity [2] Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) and disease modifying antirheumatic drugs (DMARDs) along with biologics and other experimental treatments have been used to slow the clinical progression of RA [4,5,6,7]. These agents have limited efficacy and serious side effects [8,9,10,11]. The goal of the current studies was to examine the immunomodulatory effects and mechanisms of action of EGCG on experimental arthritis in mice

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.