Abstract
Dietary green tea epigallocatechin-3-gallate (EGCG) could attenuate experimental autoimmune encephalomyelitis via the modification of the balance of CD4+ T helper (Th) cells. Moreover, EGCG administration in vitro has a direct impact on the regulatory cytokines and differentiation of CD4+ T cells. Here, we aim to determine whether EGCG directly affects the cell division and progression in naive CD4+ T cells. We first investigate the effect of EGCG on naïve CD4+ T cell division and progression in vitro. An integrated analysis of network pharmacology and molecular docking was utilized to further identify the targets of EGCG for T cell-mediated autoimmune diseases and multiple sclerosis (MS). EGCG treatment prevented naïve CD4+ T cells from progressing through the cell cycle when stimulated with anti-CD3/CD28 antibodies. This was achieved by increasing the proportion of cells arrested in the G0/G1 phase by 8.6% and reducing DNA synthesis activity by 51% in the S phase. Furthermore, EGCG treatment inhibited the expression of cyclins (cyclin D1, cyclin D3, cyclin A, and cyclin B1) and CDKs (CDK2 and CDK6) during naïve CD4+ T cell activation in response to anti-CD3/CD28 stimulation. However, EGCG inhibited the decrease of P27Kip1 (CDKN1B) during naïve CD4+ T cell activation, whereas it inhibited the increase of P21Cip1 (CDKN1A) expression 48 h after mitogenic stimulation. The molecular docking analysis confirmed that these proteins (CD4, CCND1, and CDKN1A) are the primary targets for EGCG, T cell-mediated autoimmune diseases, and MS. Finally, target enrichment analysis indicated that EGCG may affect the cell cycle, T cell receptor signaling pathway, Th cell differentiation, and NF-κB signaling pathway. These findings reveal a crucial role of EGCG in the division and progression of CD4+ T cells, and underscore other potential targets of EGCG in T cell-mediated autoimmune diseases such as MS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.