Abstract

Clinical and epidemiological studies have indicated that the consumption of green tea has a number of beneficial effects on health. Epigallocatechin-3-gallate (EGCg), the major polyphenolic compound present in green tea, has received much attention as an active ingredient. Among the numerous promising profiles of EGCg, the present study focused on the anticancer effects. Apoptosis induced by EGCg and subsequent cell growth suppression have been demonstrated in a number of cell culture studies. However, the underlying mechanism of apoptotic cell death remains unclear. Thus, the aim of the present study was to identify the major molecule that mediates proapoptotic cell death by EGCg. The effect of EGCg on cell proliferation and the induction of mRNA that modulates apoptotic cell death was evaluated in the A549 human non-small-cell lung cancer cell line. In addition, morphological changes were assessed by microscopy in A549 cells that had been treated with 100 μM EGCg for 24 h. The MTT assay revealed that cell proliferation was significantly reduced by EGCg in a dose-dependent manner (3–100 μM). The mRNA expression level of B-cell lymphoma-extra large (Bcl-xL) was decreased in A549 cells following 24 h incubation with 100 μM EGCg. Therefore, the results indicated that the inhibition of cell proliferation by EGCg may be achieved via suppressing the expression of the cell death-inhibiting gene, Bcl-xL.

Highlights

  • Green tea (Camellia sinensis) is one of the most popular beverages worldwide, and contains a large amount of flavonoids, predominantly catechins, including epicatechin, its hydroxyl derivative epigallocatechin, and their gallic acid esters, epicatechin‐3‐gallate and epigallocatechin‐3‐gallate (EGCg; Fig. 1)

  • EGCg has been reported to inhibit the activation of nuclear factor (NF)‐κB [14], and the activation of NF‐κB leads to the inhibition of apoptosis

  • NF‐κB is a heterodimer consisting of two proteins, p65 and p50

Read more

Summary

Introduction

Green tea (Camellia sinensis) is one of the most popular beverages worldwide, and contains a large amount of flavonoids, predominantly catechins, including epicatechin, its hydroxyl derivative epigallocatechin, and their gallic acid esters, epicatechin‐3‐gallate and epigallocatechin‐3‐gallate (EGCg; Fig. 1). Among these catechins, EGCg is an abundant constituent of green tea (leaf) and has been shown to exhibit antioxidative, anticarcinogenic and anticancer effects in vitro. A prospective cohort study on a Japanese population demonstrated that green tea has a strong potency in preventing cancers in a variety of organs [6].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call