Abstract

Background: Idiopathic causes of infertility is associated with oxidative stress. Antioxidants are known to scavenge the excessive production of reactive oxygen species (ROS). Green tea (Camellia sinensis) contains polyphenols that enhance its antioxidant potential.Aim: This study focused on the impact of aqueous green tea extract on normozoospermic human spermatozoa.Setting: Department of Medical Biosciences, University of the Western Cape (UWC), South Africa.Methods: Semen samples obtained using masturbation method following three to five days of sexual abstinence from consenting men (n = 59) at the University of the Western Cape (UWC) were liquefied and analysed. Normozoospermic samples were selected according to the World Health Organization (WHO) 5th guideline. Thereafter, semen samples (7.5 × 106 /mL) were washed in human tubular fluid (HTF; 10 min at 300 ×g) and exposed to aqueous extracts of green tea (0 μg/mL, 0.4 μg/mL, 4 μg/mL, 40 μg/mL, 405 μg/mL) for 1 h with various sperm parameters analyzed. Human tubular fluid supplemented with bovine serum albumin (HTF-BSA; 10%) served as control.Results: Sperm motility, reactive oxygen species production, across some reaction and deoxyribonucleic acid (DNA) fragmentation decreased significantly, particularly at the highest concentration (405 μg/mL; p 0.001). A substantial increase in the percentage of viable spermatozoa and those with intact mitochondrial membrane potential (MMP) were observed (p 0.001).Conclusion: Aqueous extract of green tea prolonged sperm viability and MMP while reducing sperm intracellular ROS production, capacitation and across some reaction and DNA fragmentation, and may be attributed to its antioxidant potential. However, a high concentration of the extract appears to be detrimental to the functioning of human spermatozoa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.