Abstract
Corrosion is a major issue in every industrial system. As a result of its widespread application, aluminum suffers enormous annual losses due to corrosion. Scientists are continually on the lookout for effective anti-corrosion strategies. Corrosion may be reduced in a number of ways, but many of them are harmful to the environment, so it's important to find a green alternative. Corrosion inhibitors in aluminum alloys can be found in green tea and tulsi extract. In this research, we found that aluminum alloy 1100 (Al-1100) ina 10% NaOH solution was inhibited by both green tea and Tulsi extract. Samples of AL alloy are submerged in 10% NaOH solutions with and without an inhibitor for a total of 25 days. The weight-loss technique is used to determine the effectiveness of an inhibitor, with tulsi extract far outperforming green tea with the best efficiency of 83.93% compared to the greatest efficiency of 14.29% for green tea. After being submerged in an inhibitory solution, an aluminum alloy surface developed an adsorbed protective layer, which is chemical adsorption, as seen by FTIR (Fourier-Transform Infrared Spectroscopy) spectroscopy. Green inhibitors those are present on the surface of the aluminum alloys are less corrosive confirmed by the SEM (Scanning Electron Microscopy) analysis. The chemical particles were found to be present as a coating over AL alloy surfaces, as determined by EDS (Energy Dispersion Spectroscopy) testing. In a10% NaOH solution, Al-1100 is inhibited more effectively by tulsi extracts than by green tea extracts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.