Abstract
The objective of this study is to design and develop a green-synthetic, multifunctional hybrid micelles with shell embedded magnetic nanoparticles for theranostic applications. The hybrid micelles were engineered based on complex micelles self-assembled from amphiphilic block copolymers Pluronic F127 and peptide-amphiphile (PA) pal-AAAAHHHD. The reason to choose PA is due to its amphiphilic character and the coordination capability for Fe(3+) and Fe(2+). The PA incorporation allows the in situ growth of the magnetic iron oxide nanoparticles onto the complex micelles, to yield the nanostructures with shell embedded magnetic nanoparticles at an ambient condition without any organic solvents. The anticancer drug doxorubicin (DOX) can be efficiently loaded into the hybrid micelles. Interestingly, the magnetic nanoparticles anchored on the shell were found to significantly retard the DOX release behavior of the drug loaded hybrid micelles. It was proposed that a cross-linking effect of the shell by magnetic nanoparticles is a key to underlie the above intriguing phenomenon, which could enhance the stability and control the drug diffusion of the hybrid micelles. Importantly, in vitro and in vivo magnetic resonance imaging (MRI) revealed the potential of these hybrid micelles to be served as a T2-weighted MR imaging contrast enhancer for clinical diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.