Abstract

Microalgae and Cyanobacteria extracts can be used for the synthesis of spherical silver nanoparticles by the reduction of AgNO3 under air atmosphere at room temperature. Here, we synthesized AgNPs using extracts of one cyanobacterium (Synechococcus elongatus) and two microalgae (Stigeoclonium sp. and Cosmarium punctulatum). The nature of the AgNPs was characterized by TEM, HR-TEM, EDS, and UV–Vis. Considering the large quantity of functional groups in the ligands of AgNPs, we suppose they could retain ion metals, which would be useful for water decontamination. Thus, their capacity to adsorb iron and manganese at concentrations of 1.0, 5.0, and 10.0 mg L−1 in aqueous solutions was evaluated. All experiments were performed in triplicate of microorganism extract with no addition of AgNO3 (control) and AgNP colloid (treatment) at room temperature. The ICP analyses showed that the treatments containing nanoparticles were commonly more efficient at removing Fe3+ and Mn2+ ions than the corresponding controls. Interestingly, the smaller nanoparticles (synthesized by Synechococcus elongatus) were the most effective at removing Fe3+ and Mn2+ ions, probably due to their higher surface area:volume ratio. The green synthesized AgNPs proved to be an interesting system for the manufacture of biofilters that could be used to capture contaminant metals in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.