Abstract
Acinetobacter baumanii, a gram-negative, non-motile, encapsulated coccobacillus which causes infections worldwide. The objective of this study was to find a fungal strain that could be utilized to biosynthesize antibacterial silver nanoparticles (AgNPs) against Acinetobacter baumanii. The present investigation explains rapid and extracellular biosynthesis of silver nanoparticles by the algicolous endophytic fungus, Penicillium polonicum, isolated from the marine green alga Chetomorpha antennina. The obtained silver nanoparticles were characterized by UV-Vis spectroscopy, Raman spectroscopy, Fourier transformation infrared (FTIR), and Transmission electron microscopy (TEM). The SNPs showed a characteristic UV- visible peak at 430 nm with an average size of 10–15 nm. As evident from the FTIR and Raman spectra, possibly the protein components of fungal extract have caused the reduction of silver nitrate. Parametric optimization, including the concentration of AgNO3, ratio of cell filtrate and AgNO3, fungal biomass, reaction time, pH, and presence of light, was done for rapid AgNPs production. The antibacterial efficacy of AgNPs against multi-drug-resistant, biofilm-forming Acinetobacter baumanii, was evaluated by well diffusion assay. The Minimum inhibitory concentration (MIC) of AgNP was 15.62 μgml−1 and the minimum bactericidal concentration (MBC) was 31.24 μgml−1. Killing kinetic assay revealed complete killing of the bacterial cells within 6 h. Log reduction and percent survival of bacterial cells were analyzed from killing kinetic study. Bactericidal nature of synthesized nanoparticles was confirmed by fluorescent microscopical analysis. The effect of AgNPs on the ultrastructure of bacterial pathogen was evaluated by Transmission electron microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.