Abstract

Aims: The green synthesis of silver nanoparticles in an eco-friendly, economical and more effective approach using (Acacia cyanophylla, Phlomis syriaca and Scolymus hispanicus) plants extracts and describing their main chemical properties and study the effect of its chemical composition on producing silver nanoparticles.
 Methodology: In this study, aqueous and ethanolic extracts of the three plants were evaluated for antioxidant activity using 2,2-diphenyl-l-picrylhydrazyl (DPPH) assay, Total polyphenol and flavonoid contents were determined using spectrophotometric method, but total saponins were determined by weight method, The synthesis of silver nanoparticles was performed by a reduction method using aqueous silver nitrate solution and aqueous extracts of the three plants. Then study its characterization in a number of ways, such as visual inspection, UV-Vis spectroscopy and dynamic light scattering.
 Results: The results showed that the total phenolic content ranged in extracts between (13.08 ±2.279 to 98.39 ±4.755 mg GAE/g DW). While the total flavonoid contents varied from (19.83 ±2.384 to 121.64 ±6.469 mg RE/g DW. Antioxidant activity was expressed as IC50 and the obtained results ranged from (IC50= 0.027 ±0.00038 to 0.878 ±0.045 mg/ml), the results indicated that the ethanolic Acacia cyanophylla extract from the six examined extracts showed the highest phenolic and flavonoid concentration and strong antioxidant activity. Also, the saponins content in the three plants ranged from (0.46 to 2.53)% and the highest amount of saponins reported in Acacia cyanophylla plant. The silver nanoparticles prepared using Acacia cyanophylla extract have reported visible yellowish brown color formation and the absorption peak at 460 nm indicates the biosynthesis of silver nanoparticles and they have average diameter (134.1) nm and the polydispersity index (PdI) was suitable (0.260).
 Conclusion: Acacia cyanophylla extract has been considered as the best reducing agent among the selected plant extracts for the preparation of stable colloidal silver nanoparticles, this is due to their high content of flavonoids, phenols and saponins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call