Abstract
In recent years, green synthesized nanoparticles from plant extract have drawn a great interest due to their prospective nanomedicinal application. This study investigates a proficient, safer, and sustainable way for the preparation of AgNPs using medicinal plant Pongamia pinnata (family: Leguminoseae, species: Pinnata) seeds extract without using any external reducing and stabilizing agent. Both ultraviolet-visible spectrum at λmax =439nm and energy dispersive X-ray spectra proof the formation of AgNPs. An average diameter of the AgNPs was 16.4nm as revealed from transmission electron microscope. Hydrodynamic size (d=~19.6nm) was determined by dynamic light scattering (DLS). Zeta potential of AgNPs was found to be -23.7mV, which supports its dispersion and stability. Fourier transform infrared study revealed that the O─H, C═O, and C-O-C groups were responsible for the formation of AgNPs. The antibacterial activity of the synthesized AgNPs was checked against Escherichia coli ATCC 25922. AgNPs at its LD50 dose exhibited synergistic effect with ampicillin. Because protein-AgNPs association greatly affects its adsorption, distribution, and functionality and can also influence the functions of biomolecules. So in order to understand the adsorption and bioavailability, we investigated by fluorescence, ultraviolet-visible, and circular dichroism spectroscopic methods the interaction of synthesized AgNPs toward human serum albumin. The binding affinity and binding sites of human serum albumin toward AgNPs were measured by using the fluorescence quenching data. The circular dichroism spectroscopic results revealed that there was a negligible change of α-helical content in their native structure. Overall, these AgNPs show versatile biological activities and may be applied in the field of nanomedicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.