Abstract
An ecofriendly and zero cost approach has been developed for the photoinduced synthesis of more stable AgNPs using an aqueous extract of Murraya koenigii (AEM) as a reducing and stabilizing agent. The exposed reaction mixture of AEM and AgNO3 to sunlight turned dark brown which primarily confirmed the biosynthesis of AgNPs. The biosynthesis was monitored by UV–vis spectroscopy which exhibited a sharp SPR band at 430nm after 30min of sunlight exposure. The optimum conditions for biosynthesis of AgNPs were 30min of sunlight exposure, 2.0% (v/v) of AEM inoculuam dose and 4.0mM AgNO3 concentration. TEM analysis confirmed the presence of spherical AgNPs with average size 8.6nm. The crystalline nature of the AgNPs was confirmed by XRD analysis where the Bragg's diffraction pattern at (111), (200), (220) and (311) corresponded to face centered cubic crystal lattice of metallic silver. The surface texture was analyzed by AFM analysis where the average roughness of the synthesized AgNPs was found 1.8nm. FTIR analysis was recorded between 4000 and 400cm−1 which confirmed the involvement of various functional groups in the synthesis of AgNPs. On the basis of the linear relationship between SPR band intensity and different concentration of Hg2+, the synthesized AgNPs can be used for colorimetric detection of Hg2+ with a linear range from 50nm to 500μM. Based on experimental findings, an oxidation-reduction mechanism between AgNPs and Hg2+ was also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology B: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.