Abstract
Well faceted CuO nanoparticles were synthesized by thermal-assisted green strategy at reflux temperature in a short period of time. A possible growth mechanism of such highly faceted nanostructures based on typical biomolecule-crystal interactions in aqueous solution is tentatively proposed. The large surface area (223.36m2/g) and rich exposed active sites are expected to endow such nanostructures with excellent performances in catalysis as demonstrated here for remarkable catalytic activity with respect to the N-arylation of indoles. Nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Both the activity and selectivity of the N-arylation reactions could be tuned by varying the concentration of CuO nanoparticles. Nanoparticles catalyst were recycled and reused for further catalytic reactions with minimal loss in activity. A variety of indole derivatives afforded corresponding N-arylation product with excellent yields (up to 98%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.