Abstract

The sensitive colorimetric detection of glucose using nanomaterials has been attracting considerable attention. To improve the detection sensitivity, highly stable lentinan stabilized platinum nanoclusters (Pt-LNT NCs) were prepared, in which lentinan was employed as a mild reductant and stabilizer. The size of platinum nanoclusters (Pt NCs) was only 1.20 ± 0.29 nm. Pt-LNT NCs catalyzed the oxidation of substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) to produce a blue oxidation product with absorption peak at 652 nm, indicating their peroxidase-like properties. Their enzymatic kinetics followed typical Michaelis-Menten theory. In addition, fluorescence experiments confirmed their ability to efficiently catalyze the decomposition of H2O2 to generate •OH, which resulted in the peroxidase-like mechanism of Pt-LNT NCs. Moreover, a colorimetric method for highly selective and sensitive detection of glucose was established by using Pt-LNT NCs and glucose oxidase. The linear range of glucose detection was 5–1000 μM and the detection limit was 1.79 μM. Finally, this method was further used for detection of glucose in human serum and human urine. The established colorimetric method may promote the development of biological detection and environmental chemistry in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call