Abstract

In the present work P−ZrO2CeO2ZnO nanoparticles were synthesised for the first time using phytochemical extracts from Flacourtia indica leaves and applied in the photocatalytic degradation of Congo Red in the presence of Light Emitting Diode warm white light. The photocatalytic degradation was optimized with respect to P−ZrO2CeO2ZnO nanoparticle dosage, initial Congo Red concentration, and degradation time. The optimum conditions for P−ZrO2CeO2ZnO nanoparticle synthesis was pH 9, leaves extracts of F. indica dosage 4 g 100 mL−1, Zirconia, Cerium and Zinc metal ion concentration 0.05 mg/L and metal ion to plant volume ratio of 1:4. The leaves extract dosage, pH and metal concentration had the most significant effects on the synthesis of the nanoparticles. The nanoparticles followed type III physisorption adsorption isotherms with surface area of 0.4593 m3g−1, pore size of 6.80 nm, pore volume 0.000734 cmg−13 and average nanoparticle size 0.255 nm. A degradation efficiency of 86% was achieved and the optimum degradation conditions were 0.05 g/L of P−ZrO2CeO2ZnO nanoparticle dosage, 10 mg/L initial Congo red concentration, and 250 minutes irradiation time. Data from kinetic studies showed that the degradation followed pseudo first order kinetics at low concentration, with a rate constant of 0.069 min−1. The superoxide, h+ holes and light were the main determinants of the reaction mechanisms for the degradation of Congo Red. The investigation outcomes demonstrated that P−ZrO2CeO2ZnO nanoparticles offer a high potential for photocatalytic degradation of Congo Red.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call