Abstract

Physiochemical properties of the fabricated scaffolds play a crucial role in influencing the cellular response for the new tissue growth. In this study, electrospun polyurethane (PU) scaffolds incorporated with green synthesized nickel oxide nanoparticles and groundnut oil (GO) were fabricated using electrospinning technique. First, synthesis of nickel oxide (NiO) was done using leaf extract of Plectranthus amboinicus (PA) via microwave-assisted technique. Synthesized nanoparticles were confirmed through Energy-dispersive X-ray spectroscopy (EDX) analysis and size of the particles were in the range of 800–950 nm. Fiber morphology of the fabricated scaffolds was analyzed using scanning electron microscope (SEM) which showed decrease in fiber diameter for the fabricated composites compared to the pristine PU. The wettability studies showed an increase in contact angle for developed composites than the pure PU. Thermal analysis depicted an increase in thermal behavior for the PU/GO/NiO compared to the pristine PU. Surface roughness values were obtained through atomic force microscopy (AFM) which showed a decrease in roughness while adding GO and NiO to the PU. Finally, the fabricated composites showed enhanced deposition of calcium content than the pristine PU. These results corroborated that the developed composites have a significant effect on the fiber morphology, wettability, thermal behavior, surface roughness, and mineral deposition depicting its versatility for bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call