Abstract

In present study, a modification of the NiAl LDH composite with chitosan was successful. Characterization was carried out using X-rays, The results obtained show that there is an angle of 2θ at 11.57°(003); 22.91°(006); 35.04°(012); 39.73°(015); and 61.9°(110). The FT-IR spectrum of the Chitosan@NiAl LDH at Wavenumber 3448, 1635, 1543, and 601 cm−1. The NiAl LDH and chitosan have a surface area of 3.288 m2/g and 8.558 m2/g, respectively. An increase in the surface area of the composite Chitosan@NiAl LDH 9.493 m2/g, all of adsorbents follow type IV isotherm based on the classification according to IUPAC. The optimum pH of the NiAl LDH at pH 3. The optimum pH for chitosan and chitosan@NiAl LDH material is at the optimum pH of 5. The kinetic and isotherm model in the adsorption process is pseudo-second-order and Freundlich model, respectively. The maximum adsorption capacity of NiAl LDH, chitosan, and chitosan@NiAl LDH is 25.445, 23.753, and 33.223 mg/g, respectively. The increase in regeneration cycles causes a decrease in the percentage of adsorbed; sequentially, the percentage adsorbed during the fifth regeneration reaches 3.545, 1.966, 4.309%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.