Abstract

Copper bionanocomposites (CBNCS) were synthesized using Ipomoea carnea- sourced nanocellulose as support via an eco-friendly and cost-effective method. X-ray Diffractometer (XRD) pattern of CBNCS confirmed the octahedral structure of Cu2O, the face-centered cubic (FCC) crystal structure of Cu(0). XRD also revealed the crystal lattice of cellulose II. Surface Electron Microscope (SEM) and Transmission Electron Microscope (TEM) revealed the uniform distribution of copper nanoparticles (Cu NPs) with an average size of 10 nm due to the presence of nanocellulose. X-ray photoelectron spectroscopy (XPS) provided information about the electronic, chemical state and elemental composition of CBNCS. Thermogravimetric Analysis (TGA) showed the thermal stability of CBNCS. CBNCS catalyzed the rearrangement of oximes to primary amides in a very mild condition with a high yield of up to 92 %. CBNCS effectively inhibited the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with lower minimum inhibitory concentration MIC values. Antioxidant activity and electrical conductivity of CBNCS were also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.